Selected Publications

A full list of publications can be found here

Intermediate Filaments

Post-translational modifications (PTMs) as regulators of IF structure and function

Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD, Eriksson JE. (2014) Interphase phosphorylation of lamin A. J Cell Sci. 2014 Apr 16.

de Thonel A., Ferraris S.E., Pallari H.M., Imanishi S.Y., Kochin V., Hosokawa T., Hisanaga S., Sahlgren C. & Eriksson J.E. (2010). Protein kinase Czeta regulates Cdk5/p25 signaling during myogenesis. Mol. Biol. Cell 21:1423-1434.

Eriksson, J.E., He, T., Trejo-Skalli, A.V., Härmälä-Brasken, A.S., Hellman, J., Chou, Y.H. and Goldman, R.D. (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J. Cell Sci. 117:919-32.

Sahlgren, C.M., Mikhailov, A., Vaittinen, S., Pallari, H.M., Kalimo, H., Pant, H.C. and Eriksson, J.E. (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23:5090-5106.

IFs as regulators of cancer cell migration and invasion

Hyder C.L., Lazaro G., Pylvänäinen J.W., Roberts M.W., Rosenberg S.M., Eriksson J.E. (2014) Nestin regulates prostate cancer cell invasion by influencing FAK and integrin localisation and functions. J Cell Sci. Mar 7.

Nieminen, M., Henttinen, T., Merinen, M., Marttila-Ichihara, F., Eriksson, J.E. and Jalkanen S. (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8: 156-162.

Nestin-Cdk5 interplay in myogenesis and survival

Mohseni P., Sung H.K., Murphy A.J., Laliberte C.L., Pallari H-M., Henkelman M., Georgiou J., Xie G., Quaggin S.E., Thorner P.S., Eriksson J.E. & Nagy A. Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J. Neurosci. 31: 11547-52.

Pallari H.M., Lindqvist J., Torvaldson E., Ferraris S.E., He T., Sahlgren C. & Eriksson J.E. (2011). Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol. Biol. Cell. 22:1539-49

Yang J., Dominguez B., de Winter F., Gould T.W., Eriksson J.E. & Lee K.F. (2011). Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat. Neurosci. 14: 324-330.

de Thonel A., Ferraris S.E., Pallari H.M., Imanishi S.Y., Kochin V., Hosokawa T., Hisanaga S., Sahlgren C. & Eriksson J.E. (2010). Protein kinase Czeta regulates Cdk5/p25 signaling during myogenesis. Mol. Biol. Cell 21:1423-1434.

Sahlgren, C.M., Pallari, H-P., He, T., Chou, Y-H., Goldman, R.D. and Eriksson, J.E. (2006) A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death EMBO J. 25: 4808-4819.

Sahlgren, C.M., Mikhailov, A., Vaittinen, S., Pallari, H.M., Kalimo, H., Pant, H.C. and Eriksson, J.E. (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23:5090-5106.

Mathematical Modeling

Czeizler E, Mizera A, Czeizler E, Back RJ, Eriksson JE, Petre I. Quantitative analysis of the self-assembly strategies of intermediate filaments from tetrameric vimentin. IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):885-98.


Hyder C.L., Isoniemi K.O., Torvaldson E.S., Eriksson J.E. (2011). Insights into intermediate filament regulation from development to ageing. J. Cell Sci. 124: 1363-72

Eriksson J.E., Dechat T., Grin B., Helfand B., Mendez M., Pallari H.M., Goldman R.D. (2009). Introducing intermediate filaments: from discovery to disease. J. Clin. Invest. 119:1763-1771

Hyder C.L., Pallari H-M., Kochin V., Eriksson J.E. (2008) Providing cellular signposts–post-translational modifications of intermediate filaments. FEBS Lett. Jun 18;582(14):2140-8.

Ivaska J., Pallari H-M., Nevo J., Eriksson J.E. (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007 Jun 10;313(10):2050-62.

Pallari, H-M. and Eriksson, J.E. (2006) Intermediate filaments as signaling platforms. Science STKE. 19: pe53

Signal transduction in receptor-mediated apoptosis and cell survival

de Thonel A., Hazoumé A., Kochin V., Isoniemi K., Jego G., Fourmaux E., Hammann A., Mjahed H., Filhol O., Micheau O., Rocchi P., Mezger V., Eriksson J.E., Rangnekar V.M., Garrido C.. (2014). Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell. Death. Dis. 23(5):e1016.

Koenig A., Buskiewicz I.A., Fortner K.A., Russell J.Q., Asaoka T., He Y.W., Hakem R., Eriksson J.E., Budd R.C. (2014). The c-FLIPL cleavage product p43FLIP promotes activation of extracellular signal-regulated kinase (ERK), nuclear factor kappaB (NF-kB), and caspase-8 and T cell survival. J. Biol. Chem. 289(2): 1183-91.

Ferraris S.E., Isoniemi K., Torvaldson E., Anckar J., Westermarck J. & Eriksson J.E. (2012). Nucleolar AATF regulates c-Jun-mediated apoptosis. Mol. Biol. Cell. 23(21): 4323-32. .

Peuhu E., Kaunisto A., Laihia J.K., Leino L. & Eriksson J.E. (2010). Molecular targets for the protodynamic action of cis-urocanic acid in human bladder carcinoma cells. BMC Cancer. 10:521.

Kaunisto A., Kochin V., Asaoka T., Mikhailov A., Poukkula M., Meinander A. & Eriksson J.E. (2009). PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ.16:1215-26.

Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamäki, T., Johnson, M.J., Sistonen, L. and Eriksson, J.E. (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280: 27345-27355.

Tran, S.E.F., Meinander, A., Holmström, T.H., Rivero-Muller, A., Heiskanen, K.M., Linnau, E.K., Courtney, M.J., Mosser, D.D., Sistonen, L. and Eriksson, J.E. (2003) Heat stress downregulates FLIP and sensitizes to Fas receptor-mediated apoptosis. Cell Death Differ. 10: 1137-1147.

Tran, S.E.F., Holmström, T.H., Ahonen, M., Kähäri, V-M. and Eriksson J.E. (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J. Biol. Chem. 276: 16484- 16490.

Holmström T.H., Schmitz I., Söderström T.S., Poukkula M., Johnson V.L., Chow S.C., Krammer P.H., Eriksson J.E. (2000) MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J. Oct 16;19(20):5418-28.

Mathematical Modeling

Toivonen H.T., Meinander A., Asaoka T., Westerlund M., Pettersson F., Mikhailov A., Eriksson J.E. & Saxen H. (2011) Modeling reveals that dynamic regulation of c-FLIP levels determines cell-to-cell distribution of CD95-mediated apoptosis. J Biol Chem. 286: 18375-82.

Petre I., Mizera A., Hyder C.L., Meinander A., Mikhailov A., Eriksson J.E., Sistonen L., Morimoto R.I., Back R-J. (2010) A simple mass action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing 10(1) 595-612 Springer


Asaoka T., Kaunisto A. & Eriksson J.E. (2011) Regulation of cell death by c-FLIP phosphorylation. Adv. Exp. Med. Biol. 691: 625-30 (review).

Plant-derived compounds for pharmacological targeting of death and survival signaling


Peuhu E., Paul P., Remes M., Holmbom T., Eklund P., Sjöholm R., Eriksson J.E. (2013) The antitumor lignan Nortrachelogenin sensitizes prostate cancer cells to TRAIL-induced cell death by inhibition of the Akt pathway and growth factor signaling. Biochem Pharmacol. Sep 1;86(5):571-83.

Peuhu E., Rivero-Müller A., Stykki H., Torvaldson E., Holmbom T., Eklund P., Unkila M., Sjöholm R. & Eriksson J.E. (2010). Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 29:898-908.

Anisomelic Acid (AA)

Paul P, Rajendran SK, Peuhu E, Alshatwi AA, Akbarsha MA, Hietanen S, Eriksson JE. (2014) Novel action modality of the diterpenoid anisomelic acid causes depletion of E6 and E7 viral oncoproteins in HPV-transformed cervical carcinoma cells. Biochem Pharmacol. May 15;89(2):171-84.

Nanoparticles as carriers of antitumor drugs

Karaman D.S., Desai D., Senthilkumar R., Johansson E.M., Råtts N., Odén M., Eriksson J.E., Sahlgren C., Toivola D.M. & Rosenholm J.M. (2012). Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Res Lett. 7: 358

Rosenholm J.M., Peuhu E., Bate-Eya L.T., Eriksson J.E., Sahlgren C. & Lindén M. (2010). Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 6:1234-1241.

Rosenholm J.M., Peuhu E., Eriksson J.E., Sahlgren C. & Lindén M. (2009). Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett. 9:3308-3311.

Rosenholm J., Meinander A. Peuhu E., Niemi R., Eriksson J.E., Sahlgren C. & Lindén M. (2009). Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 27:197-206.

Proteomics method development

Blomster H.A., Imanishi S.Y., Siimes J., Kastu J., Morrice N.A., Eriksson J.E. & Sistonen L. (2010). In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J. Biol. Chem. 285:19324-9 23:5090-5106.

Imanishi S.Y., Kouvonen P., Smått J.H., Heikkilä M., Peuhu E., Mikhailov A., Ritala M., Lindén M., Corthals G.L. & Eriksson J.E. (2009). Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. Rapid Commun. Mass Spectrom. 23: 3661-3667. 23:5090-5106.

Imanishi S.Y., Kochin V., Ferraris S.E., deThonel A., Pallari H-M., Corthals G.L. & Eriksson J.E. (2007). Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by mikro-LC-ESI-Q-TOF MS/MS. Mol. Cell. Proteomics 6: 1380-1391. 23:5090-5106.

Kochin, V., Imanishi S.Y. and Eriksson, J.E. (2006) Fast track to a phosphoprotein sketch – MALDI-TOF characterization of TLCbased tryptic phosphopeptide maps at femtomolar detection sensitivity. Proteomics 6: 5676-82. 23:5090-5106.

Imanishi, S.Y., Kochin, V. and Eriksson, J.E. (2006) Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics 7: 174-176. 23:5090-5106.