Selected Publications

A full list of publications can be found here
 

Intermediate Filaments

Post-translational modifications (PTMs) as regulators of IF structure and function

Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD, Eriksson JE. (2014) Interphase phosphorylation of lamin A. J Cell Sci. 2014 Apr 16. http://www.ncbi.nlm.nih.gov/pubmed/24741066

de Thonel A., Ferraris S.E., Pallari H.M., Imanishi S.Y., Kochin V., Hosokawa T., Hisanaga S., Sahlgren C. & Eriksson J.E. (2010). Protein kinase Czeta regulates Cdk5/p25 signaling during myogenesis. Mol. Biol. Cell 21:1423-1434. http://www.ncbi.nlm.nih.gov/pubmed/20200223

Eriksson, J.E., He, T., Trejo-Skalli, A.V., Härmälä-Brasken, A.S., Hellman, J., Chou, Y.H. and Goldman, R.D. (2004) Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J. Cell Sci. 117:919-32. http://www.ncbi.nlm.nih.gov/pubmed/14762106

Sahlgren, C.M., Mikhailov, A., Vaittinen, S., Pallari, H.M., Kalimo, H., Pant, H.C. and Eriksson, J.E. (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/12832492

IFs as regulators of cancer cell migration and invasion

Hyder C.L., Lazaro G., Pylvänäinen J.W., Roberts M.W., Rosenberg S.M., Eriksson J.E. (2014) Nestin regulates prostate cancer cell invasion by influencing FAK and integrin localisation and functions. J Cell Sci. Mar 7. http://www.ncbi.nlm.nih.gov/pubmed/24610946

Nieminen, M., Henttinen, T., Merinen, M., Marttila-Ichihara, F., Eriksson, J.E. and Jalkanen S. (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell Biol. 8: 156-162. http://www.ncbi.nlm.nih.gov/pubmed/16429129

Nestin-Cdk5 interplay in myogenesis and survival

Mohseni P., Sung H.K., Murphy A.J., Laliberte C.L., Pallari H-M., Henkelman M., Georgiou J., Xie G., Quaggin S.E., Thorner P.S., Eriksson J.E. & Nagy A. Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J. Neurosci. 31: 11547-52. http://www.ncbi.nlm.nih.gov/pubmed/21832185

Pallari H.M., Lindqvist J., Torvaldson E., Ferraris S.E., He T., Sahlgren C. & Eriksson J.E. (2011). Nestin as a regulator of Cdk5 in differentiating myoblasts. Mol. Biol. Cell. 22:1539-49 http://www.ncbi.nlm.nih.gov/pubmed/21346193

Yang J., Dominguez B., de Winter F., Gould T.W., Eriksson J.E. & Lee K.F. (2011). Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat. Neurosci. 14: 324-330. http://www.ncbi.nlm.nih.gov/pubmed/21278733

de Thonel A., Ferraris S.E., Pallari H.M., Imanishi S.Y., Kochin V., Hosokawa T., Hisanaga S., Sahlgren C. & Eriksson J.E. (2010). Protein kinase Czeta regulates Cdk5/p25 signaling during myogenesis. Mol. Biol. Cell 21:1423-1434. http://www.ncbi.nlm.nih.gov/pubmed/20200223

Sahlgren, C.M., Pallari, H-P., He, T., Chou, Y-H., Goldman, R.D. and Eriksson, J.E. (2006) A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death EMBO J. 25: 4808-4819. http://www.ncbi.nlm.nih.gov/pubmed/17036052

Sahlgren, C.M., Mikhailov, A., Vaittinen, S., Pallari, H.M., Kalimo, H., Pant, H.C. and Eriksson, J.E. (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/12832492

Mathematical Modeling

Czeizler E, Mizera A, Czeizler E, Back RJ, Eriksson JE, Petre I. Quantitative analysis of the self-assembly strategies of intermediate filaments from tetrameric vimentin. IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):885-98. http://www.ncbi.nlm.nih.gov/pubmed/22442133

Reviews

Hyder C.L., Isoniemi K.O., Torvaldson E.S., Eriksson J.E. (2011). Insights into intermediate filament regulation from development to ageing. J. Cell Sci. 124: 1363-72 http://www.ncbi.nlm.nih.gov/pubmed/21502133

Eriksson J.E., Dechat T., Grin B., Helfand B., Mendez M., Pallari H.M., Goldman R.D. (2009). Introducing intermediate filaments: from discovery to disease. J. Clin. Invest. 119:1763-1771 http://www.ncbi.nlm.nih.gov/pubmed/19587451

Hyder C.L., Pallari H-M., Kochin V., Eriksson J.E. (2008) Providing cellular signposts–post-translational modifications of intermediate filaments. FEBS Lett. Jun 18;582(14):2140-8. http://www.ncbi.nlm.nih.gov/pubmed/18502206

Ivaska J., Pallari H-M., Nevo J., Eriksson J.E. (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007 Jun 10;313(10):2050-62. http://www.ncbi.nlm.nih.gov/pubmed/17512929

Pallari, H-M. and Eriksson, J.E. (2006) Intermediate filaments as signaling platforms. Science STKE. 19: pe53 http://www.ncbi.nlm.nih.gov/pubmed/17179489
 

Signal transduction in receptor-mediated apoptosis and cell survival

de Thonel A., Hazoumé A., Kochin V., Isoniemi K., Jego G., Fourmaux E., Hammann A., Mjahed H., Filhol O., Micheau O., Rocchi P., Mezger V., Eriksson J.E., Rangnekar V.M., Garrido C.. (2014). Regulation of the proapoptotic functions of prostate apoptosis response-4 (Par-4) by casein kinase 2 in prostate cancer cells. Cell. Death. Dis. 23(5):e1016. http://www.ncbi.nlm.nih.gov/pubmed/24457960

Koenig A., Buskiewicz I.A., Fortner K.A., Russell J.Q., Asaoka T., He Y.W., Hakem R., Eriksson J.E., Budd R.C. (2014). The c-FLIPL cleavage product p43FLIP promotes activation of extracellular signal-regulated kinase (ERK), nuclear factor kappaB (NF-kB), and caspase-8 and T cell survival. J. Biol. Chem. 289(2): 1183-91. http://www.ncbi.nlm.nih.gov/pubmed/242756592

Ferraris S.E., Isoniemi K., Torvaldson E., Anckar J., Westermarck J. & Eriksson J.E. (2012). Nucleolar AATF regulates c-Jun-mediated apoptosis. Mol. Biol. Cell. 23(21): 4323-32. . http://www.ncbi.nlm.nih.gov/pubmed/22933572

Peuhu E., Kaunisto A., Laihia J.K., Leino L. & Eriksson J.E. (2010). Molecular targets for the protodynamic action of cis-urocanic acid in human bladder carcinoma cells. BMC Cancer. 10:521. http://www.ncbi.nlm.nih.gov/pubmed/20920317

Kaunisto A., Kochin V., Asaoka T., Mikhailov A., Poukkula M., Meinander A. & Eriksson J.E. (2009). PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ.16:1215-26. http://www.ncbi.nlm.nih.gov/pubmed/19343040

Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamäki, T., Johnson, M.J., Sistonen, L. and Eriksson, J.E. (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280: 27345-27355. http://www.ncbi.nlm.nih.gov/pubmed/15886205

Tran, S.E.F., Meinander, A., Holmström, T.H., Rivero-Muller, A., Heiskanen, K.M., Linnau, E.K., Courtney, M.J., Mosser, D.D., Sistonen, L. and Eriksson, J.E. (2003) Heat stress downregulates FLIP and sensitizes to Fas receptor-mediated apoptosis. Cell Death Differ. 10: 1137-1147. http://www.ncbi.nlm.nih.gov/pubmed/14502237

Tran, S.E.F., Holmström, T.H., Ahonen, M., Kähäri, V-M. and Eriksson J.E. (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J. Biol. Chem. 276: 16484- 16490. http://www.ncbi.nlm.nih.gov/pubmed/11278665

Holmström T.H., Schmitz I., Söderström T.S., Poukkula M., Johnson V.L., Chow S.C., Krammer P.H., Eriksson J.E. (2000) MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J. Oct 16;19(20):5418-28. http://www.ncbi.nlm.nih.gov/pubmed/11032809

Mathematical Modeling

Toivonen H.T., Meinander A., Asaoka T., Westerlund M., Pettersson F., Mikhailov A., Eriksson J.E. & Saxen H. (2011) Modeling reveals that dynamic regulation of c-FLIP levels determines cell-to-cell distribution of CD95-mediated apoptosis. J Biol Chem. 286: 18375-82. http://www.ncbi.nlm.nih.gov/pubmed/21324892

Petre I., Mizera A., Hyder C.L., Meinander A., Mikhailov A., Eriksson J.E., Sistonen L., Morimoto R.I., Back R-J. (2010) A simple mass action model for the eukaryotic heat shock response and its mathematical validation. Natural Computing 10(1) 595-612 Springer

Reviews

Asaoka T., Kaunisto A. & Eriksson J.E. (2011) Regulation of cell death by c-FLIP phosphorylation. Adv. Exp. Med. Biol. 691: 625-30 (review). http://www.ncbi.nlm.nih.gov/pubmed/21153369
 

Plant-derived compounds for pharmacological targeting of death and survival signaling

Lignans

Peuhu E., Paul P., Remes M., Holmbom T., Eklund P., Sjöholm R., Eriksson J.E. (2013) The antitumor lignan Nortrachelogenin sensitizes prostate cancer cells to TRAIL-induced cell death by inhibition of the Akt pathway and growth factor signaling. Biochem Pharmacol. Sep 1;86(5):571-83. http://www.ncbi.nlm.nih.gov/pubmed/23747345

Peuhu E., Rivero-Müller A., Stykki H., Torvaldson E., Holmbom T., Eklund P., Unkila M., Sjöholm R. & Eriksson J.E. (2010). Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 29:898-908. http://www.ncbi.nlm.nih.gov/pubmed/19935713

Anisomelic Acid (AA)

Paul P, Rajendran SK, Peuhu E, Alshatwi AA, Akbarsha MA, Hietanen S, Eriksson JE. (2014) Novel action modality of the diterpenoid anisomelic acid causes depletion of E6 and E7 viral oncoproteins in HPV-transformed cervical carcinoma cells. Biochem Pharmacol. May 15;89(2):171-84. http://www.ncbi.nlm.nih.gov/pubmed/24565908

Nanoparticles as carriers of antitumor drugs

Karaman D.S., Desai D., Senthilkumar R., Johansson E.M., Råtts N., Odén M., Eriksson J.E., Sahlgren C., Toivola D.M. & Rosenholm J.M. (2012). Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Res Lett. 7: 358 http://www.ncbi.nlm.nih.gov/pubmed/22747910

Rosenholm J.M., Peuhu E., Bate-Eya L.T., Eriksson J.E., Sahlgren C. & Lindén M. (2010). Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 6:1234-1241. http://www.ncbi.nlm.nih.gov/pubmed/20486218

Rosenholm J.M., Peuhu E., Eriksson J.E., Sahlgren C. & Lindén M. (2009). Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett. 9:3308-3311. http://www.ncbi.nlm.nih.gov/pubmed/19736973

Rosenholm J., Meinander A. Peuhu E., Niemi R., Eriksson J.E., Sahlgren C. & Lindén M. (2009). Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 27:197-206. http://www.ncbi.nlm.nih.gov/pubmed/19206267
 

Proteomics method development

Blomster H.A., Imanishi S.Y., Siimes J., Kastu J., Morrice N.A., Eriksson J.E. & Sistonen L. (2010). In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J. Biol. Chem. 285:19324-9 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/20388717

Imanishi S.Y., Kouvonen P., Smått J.H., Heikkilä M., Peuhu E., Mikhailov A., Ritala M., Lindén M., Corthals G.L. & Eriksson J.E. (2009). Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. Rapid Commun. Mass Spectrom. 23: 3661-3667. 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/19899184

Imanishi S.Y., Kochin V., Ferraris S.E., deThonel A., Pallari H-M., Corthals G.L. & Eriksson J.E. (2007). Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by mikro-LC-ESI-Q-TOF MS/MS. Mol. Cell. Proteomics 6: 1380-1391. 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/17510049

Kochin, V., Imanishi S.Y. and Eriksson, J.E. (2006) Fast track to a phosphoprotein sketch – MALDI-TOF characterization of TLCbased tryptic phosphopeptide maps at femtomolar detection sensitivity. Proteomics 6: 5676-82. 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/17024653

Imanishi, S.Y., Kochin, V. and Eriksson, J.E. (2006) Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics 7: 174-176. 23:5090-5106. http://www.ncbi.nlm.nih.gov/pubmed/17152096